Round (transact-sql)round (transact-sql)

Способы записи числа

Представьте, что нам надо записать число 1 миллиард. Самый очевидный путь:

Но в реальной жизни мы обычно опускаем запись множества нулей, так как можно легко ошибиться. Укороченная запись может выглядеть как или для 7 миллиардов 300 миллионов. Такой принцип работает для всех больших чисел.

В JavaScript можно использовать букву , чтобы укоротить запись числа. Она добавляется к числу и заменяет указанное количество нулей:

Другими словами, производит операцию умножения числа на 1 с указанным количеством нулей.

Сейчас давайте запишем что-нибудь очень маленькое. К примеру, 1 микросекунду (одна миллионная секунды):

Записать микросекунду в укороченном виде нам поможет .

Если мы подсчитаем количество нулей , их будет 6. Естественно, верная запись .

Другими словами, отрицательное число после подразумевает деление на 1 с указанным количеством нулей:

Шестнадцатеричные числа широко используются в JavaScript для представления цветов, кодировки символов и многого другого. Естественно, есть короткий стиль записи: , после которого указывается число.

Например:

Не так часто используются двоичные и восьмеричные числа, но они также поддерживаются для двоичных и для восьмеричных:

Есть только 3 системы счисления с такой поддержкой. Для других систем счисления мы рекомендуем использовать функцию (рассмотрим позже в этой главе).

Работающие реализации на Go

Round(), используемая в Postgres

Выше я уже упоминал, что в Postgres содержится код функции Round() на C, который работает для всех тестируемых значений. В CockroachDB мы , без комментариев он выглядит следующим образом:

Давайте разберёмся, как он работает. Первые шесть строк обрабатывают особые случаи. Далее мы выбираем roundFn из Ceil и Floor в зависимости от того, положительное число или отрицательное. Далее начинается самое интересное:

Этим кодом мы сдвигаем x ближе к нулю.

Далее мы проверяем, не стал ли x в точности нулём и не поменялся ли у него знак. Это означает что исходное число <= 0,5, в этом случае мы возвращаем ноль с нужным знаком.

Эта проверка нужна для очень больших чисел, для которых x-0,5 == x-1,0, в этих случаях мы можем вернуть число неизменённым.

Далее мы округляем число с помощью Floor() или Ceil() и возвращаем это значение, если оно отличается от x, что может случиться, только если дробная часть входного значения не равна в точности 0,5, так как выше мы вычли 0,5 из него.

Теперь мы знаем, что дробная часть равна 0,5, поэтому нам нужно округлить до ближайшего чётного числа (реализация Round() в Postgres в этом месте отличается от приведённых выше вариантов). Комментарий в коде лучше это описывает:

Чтобы сохранить оригинальное поведение, этот код можно заменить на следующий:

github.com/montanaflynn/stats

Ещё одна работающая реализация содержится в пакете github.com/montanaflynn/stats. Без комментариев она выглядит следующим образом:

Ключевое отличие от предыдущих решений заключается в использовании функции Modf(), которая корректно разделяет целую и дробную части чисел.

Округление дат и времени

Обратите внимание, что тип Дата/Время в Аксессе является особым видом типа с плавающей запятой, в котором дробная часть обозначает время дня. Следовательно, поля типа Дата/Время с компонентой времени также подвержены ошибкам округления

Функция ниже округляет дату/время до указанного количества секунд. Например, чтобы округлить до ближайшего получаса (30 * 60 seconds), используйте:     =RoundTime(, 1800)

Public Function RoundTime(varTime As Variant, Optional ByVal lngSeconds As Long = 900&) As Variant    'Цель:   Округлить величину дата/время до ближайшего количества указанных секунд      'Аргументы: varTime = величина дата/время      '           lngSeconds = количество секунд, до которых требуется округлить.      '               напр.  60 для ближайшей минуты,      '                    600 для ближайших 10 минут,      '                   3600 для ближайшего часа,      '                  86400 до следующего дня.      'Возвращает:    Округленное значение дата/время либо Null, если не было входного аргумента дата/время.      'Примечание:      lngSeconds должно быть между 1 и 86400.      '           Округляет по умолчанию до ближайших 15 minutes.      Dim lngSecondsOffset As Long            RoundTime = Null        'Инициализируем возвращаемый Null.      If Not IsError(varTime) Then          If IsDate(varTime) Then              If (lngSeconds < 1&) Or (lngSeconds > 86400) Then                  lngSeconds = 1&              End If              lngSecondsOffset = lngSeconds * CLng(DateDiff("s", #12:00:00 AM#, TimeValue(varTime)) / lngSeconds)              RoundTime = DateAdd("s", lngSecondsOffset, DateValue(varTime))          End If      End If  End Function

Использование округлений при работе с числами ограниченной точности

Реальные физические величины всегда измеряются с некоторой конечной точностью, которая зависит от приборов и методов измерения и оценивается максимальным относительным или абсолютным отклонением неизвестного истинного значения от измеренного, что в десятичном представлении значения соответствует либо определённому числу значащих цифр, либо определённой позиции в записи числа, все цифры после (правее) которой являются незначащими (лежат в пределах ошибки измерения). Сами измеренные параметры записываются с таким числом знаков, чтобы все цифры были надёжными, возможно, последняя — сомнительной. Погрешность при математических операциях с числами ограниченной точности сохраняется и изменяется по известным математическим законам, поэтому когда в дальнейших вычислениях возникают промежуточные значения и результаты с больши́м числом цифр, из этих цифр только часть являются значимыми. Остальные цифры, присутствуя в значениях, фактически не отражают никакой физической реальности и лишь отнимают время на вычисления. Вследствие этого промежуточные значения и результаты при вычислениях с ограниченной точностью округляют до того количества знаков, которое отражает реальную точность полученных значений. На практике обычно рекомендуется при длинных «цепочных» ручных вычислениях сохранять в промежуточных значениях на одну цифру больше. При использовании компьютера промежуточные округления в научно-технических приложениях чаще всего теряют смысл, и округляется только результат.

Так, например, если задана сила 5815 гс с точностью до грамма силы и длина плеча 1,4 м с точностью до сантиметра, то момент силы в кгс по формуле M=(mg)⋅h{\displaystyle M=(mg)\cdot h}, в случае формального расчёта со всеми знаками, окажется равным: 5,815 кгс • 1,4 м = 8,141 кгс•м. Однако если учесть погрешность измерения, то мы получим, что предельная относительная погрешность первого значения составляет 1/5815 ≈ 1,7•10−4, второго — 1/140 ≈ 7,1•10−3, относительная погрешность результата по правилу погрешности операции умножения (при умножении приближённых величин относительные погрешности складываются) составит 7,3•10−3, что соответствует максимальной абсолютной погрешности результата ±0,059 кгс•м! То есть в реальности, с учётом погрешности, результат может составлять от 8,082 до 8,200 кгс•м, таким образом, в рассчитанном значении 8,141 кгс•м полностью надёжной является только первая цифра, даже вторая — уже сомнительна! Корректным будет округление результата вычислений до первой сомнительной цифры, то есть до десятых: 8,1 кгс•м, или, при необходимости более точного указания рамок погрешности, представить его в виде, округлённом до одного-двух знаков после запятой с указанием погрешности: 8,14 ± 0,06 кгс•м.

Примечания

  1. Кнут Д. Э. Искусство программирования. Том 1. Основные алгоритмы = The Art of Computer Programming. Volume 1. Fundamental Algorithms / под ред. С. Г. Тригуб (гл. 1), Ю. Г. Гордиенко (гл. 2) и И. В. Красикова (разд. 2.5 и 2.6). — 3. — Москва: Вильямс, 2002. — Т. 1. — 720 с. — ISBN 5-8459-0080-8.
  2. A’HEARN, B., J. BATEN AND D. CRAYEN (2009). “Quantifying Quantitative Literacy: Age Heaping and the History of Human Capital”, Journal of Economic History 69,783-808.
  3. В. М. Заварыкин, В. Г. Житомирский, М. П. Лапчик. Техника вычислений и алгоритмизация: Вводный курс: Учебное пособие для студентов педагогических институтов по физико-математическим специальностям. — М: Просвещение, 1987. 160 с.: ил.
  4. цит. по В. Гильде, З. Альтрихтер. «С микрокалькулятором в руках». Издание второе. Перевод с немецкого Ю. А. Данилова. М:Мир, 1987, стр. 64.

Потеря точности при работе с вещественными числами

При работе с вещественными числами всегда нужно иметь в виду, что вещественные числа не точные. Всегда будут ошибки округления, ошибки преобразования из десятичной системы в двоичную и, наконец, самое частое – потеря точности при сложении/вычитании чисел слишком разных размерностей.

Последнее — самая неожиданная ситуация для новичков в программировании.

Если из числа вычесть , мы получим опять .

Вычитание чисел слишком разных размерностей Объяснение
Второе число слишком маленькое, и его значащая часть игнорируется (выделено серым). Оранжевым выделены 15 значащих цифр.

Что тут сказать, программирование — это не математика.

Различие округления в Python 2 и Python 3

В Python 2 и Python 3 реализованы разные принципы округления.

В Python 2 используется арифметическое округление. В нем наблюдается большое количество погрешностей, что приводит к неточностям в процессе вычислений.

Во втором Python есть только 4 цифры, которые ведут к преобразованию к меньшему значению – 1, 2, 3 и 4. Также 5 цифр, которые приводят к большему значению – 5, 6, 7, 8, 9. Такое неравное распределение ведет к тому, что погрешность постоянно нарастает.

Python 2 по правилам арифметического округления преобразует число 5,685 в 5,68 до второго знака. Такая погрешность связана с тем, что десятичные цифры float в двоичном коде невозможно корректно представить.

В Python 3 используются принципы банковского округления. Это означает, что преобразование производится к ближайшему четному. В таком случае также не удается полностью избежать возникающих ошибок, но программисты добиваются точности в подсчетах.

2,5 по правилам банковского преобразования будет равно 2, а 3,5 = 4 (значения возводятся к близкому четному). Минимизировать погрешности можно благодаря практически равной вероятности, что перед пятеркой будет четное или нечетное число.

АргументыArguments

numeric_expressionnumeric_expressionВыражение категории точного числового или приблизительного числового типа данных, за исключением типа данных bit.Is an expression of the exact numeric or approximate numeric data type category, except for the bit data type.

lengthlengthТочность, с которой должно быть округлено значение numeric_expression.Is the precision to which numeric_expression is to be rounded. Аргумент length должен быть выражением типа tinyint, smallint или int. Если аргумент length является положительным числом, значение numeric_expression округляется до числа десятичных разрядов, указанных в аргументе length.length must be an expression of type tinyint, smallint, or int. When length is a positive number, numeric_expression is rounded to the number of decimal positions specified by length. Если аргумент length является отрицательным числом, значение numeric_expression округляется слева от десятичной запятой, как указано в аргументе length.When length is a negative number, numeric_expression is rounded on the left side of the decimal point, as specified by length.

functionfunctionТип выполняемой операции.Is the type of operation to perform. Аргумент function должен иметь тип tinyint, smallint или int. Если аргумент function не указан или имеет значение 0 (по умолчанию), значение numeric_expression округляется.function must be tinyint, smallint, or int. When function is omitted or has a value of 0 (default), numeric_expression is rounded. Когда указывается значение, не равное 0, значение numeric_expression усекается.When a value other than 0 is specified, numeric_expression is truncated.

Применения

Округление используется для того, чтобы работать с числами в пределах того количества знаков, которое соответствует реальной точности параметров вычислений (если эти значения представляют собой измеренные тем или иным образом реальные величины), реально достижимой точности вычислений либо желаемой точности результата. В прошлом округление промежуточных значений и результата имело прикладное значение (так как при расчётах на бумаге или с помощью примитивных устройств типа абака учёт лишних десятичных знаков может серьёзно увеличить объём работы). Сейчас оно остаётся элементом научной и инженерной культуры. В бухгалтерских приложениях, кроме того, использование округлений, в том числе промежуточных, может требоваться для защиты от вычислительных ошибок, связанных с конечной разрядностью вычислительных устройств.

Более того, некоторые исследования используют округления возраста для измерения числовой грамотности. Это связано с фактом, что менее образованные люди склонны округлять свой возраст вместо того, что бы указывать точный. Например, в официальных записях населения с более низким уровнем человеческого капитала чаще встречается возраст 30, чем 31 или 29.

Округление вещественных чисел

Как мы уже разбирали, при присваивании переменной типа вещественного числа оно всегда округляется вниз до целого — его дробная часть просто отбрасывается.

А ведь легко можно представить ситуацию, когда дробное число нужно округлить просто до ближайшего целого или вообще вверх. Что делать в этой ситуации?

Для этого и для многих похожих случаев в Java есть класс , у которого есть методы , , .

Метод

Метод округляет число до ближайшего целого:

Но, как говорится, есть нюанс: результат работы этого метода — целочисленный тип (не ). Вещественные числа ведь могут быть очень большими, поэтому разработчики Java решили использовать самый большой целочисленный тип, который есть в Java — .

Поэтому чтобы присвоить результат в переменную типа , программист должен явно указать компилятору, что он согласен с возможной потерей данных (вдруг число не поместится в тип ).

Примеры:

Команда Результат

Метод

Метод округляет число до целого вверх, примеры:

Команда Результат

Метод

Метод округляет число до целого вниз, примеры:

Команда Результат

Хотя, для округления числа до целого вниз, будет проще использовать просто оператор приведения типа — :

Команда Результат

Если вам сложно запомнить эти команды, вам поможет небольшой урок английского:

  • — математика
  • — круг/округлять
  • — потолок
  • — пол

ПримерыExamples

A.A. Использование функции ROUND и приближенийUsing ROUND and estimates

Следующий пример показывает два выражения, которые демонстрируют, используя , что последний знак всегда является приближением.The following example shows two expressions that demonstrate by using the last digit is always an estimate.

Результирующий набор:Here is the result set.

В следующем примере показаны округление и аппроксимация.The following example shows rounding and approximations.

Результирующий набор:Here is the result set.

В.C. Использование функции ROUND для усеченияUsing ROUND to truncate

В следующем примере используются две инструкции для демонстрации различия между округлением и усечением.The following example uses two statements to demonstrate the difference between rounding and truncation. Первая инструкция округляет результат.The first statement rounds the result. Вторая инструкция усекает результат.The second statement truncates the result.

Результирующий набор:Here is the result set.

Эмпирические правила арифметики с округлениями

В тех случаях, когда нет необходимости в точном учёте вычислительных погрешностей, а требуется лишь приблизительно оценить количество точных цифр в результате расчёта по формуле, можно пользоваться набором простых правил округлённых вычислений:

Все исходные значения округляются до реальной точности измерений и записываются с соответствующим числом значащих цифр, так, чтобы в десятичной записи все цифры были надёжными (допускается, чтобы последняя цифра была сомнительной). При необходимости значения записываются со значащими правыми нулями, чтобы в записи указывалось реальное число надёжных знаков (например, если длина в 1 м реально измерена с точностью до сантиметров, записывается «1,00 м», чтобы было видно, что в записи надёжны два знака после запятой), или точность явно указывается (например, 2500±5 м — здесь надёжными являются только десятки, до них и следует округлять).
Промежуточные значения округляются с одной «запасной» цифрой.
При сложении и вычитании результат округляется до последнего десятичного знака наименее точного из параметров (например, при вычислении значения 1,00 м + 1,5 м + 0,075 м результат округляется до десятых метра, то есть до 2,6 м). При этом рекомендуется выполнять вычисления в таком порядке, чтобы избегать вычитания близких по величине чисел и производить действия над числами по возможности в порядке возрастания их модулей.
При умножении и делении результат округляется до наименьшего числа значащих цифр, которое имеют множители или делимое и делитель

Например, если тело при равномерном движении прошло дистанцию 2,5 × 103 метров за 635 секунд, то при вычислении скорости результат должен быть округлён до 3,9 м/с, поскольку одно из чисел (расстояние) известно лишь с точностью до двух значащих цифр.

Важное замечание: если один операндов при умножении или делитель при делении является по смыслу целым числом (то есть не результатом измерений непрерывной физической величины с точностью до целых единиц, а, например, количеством или просто целой константой), то количество значащих цифр в нём на точность результата операции не влияет, и оставляемое число цифр определяется только вторым операндом. Например, кинетическая энергия тела массой 0,325 кг, движущегося со скоростью 5,2 м/с, равна Ek=mv22=0.325⋅5.222=4.394≈4.4{\displaystyle E_{k}={\tfrac {mv^{2}}{2}}={\tfrac {0.325\cdot 5.2^{2}}{2}}=4.394\approx 4.4} Дж — округляется до двух знаков (по количеству значащих цифр в значении скорости), а не до одного (делитель 2 в формуле), так как значение 2 по смыслу — целая константа формулы, она является абсолютно точной и не влияет на точность вычислений (формально такой операнд можно считать «измеренным с бесконечным числом значащих цифр»).

При вычислении значения функции f(x){\displaystyle f\left(x\right)} требуется оценить значение модуля производной этой функции в окрестности точки вычисления

Если |f′(x)|⩽1{\displaystyle \left|f’\left(x\right)\right|\leqslant 1}, то результат функции точен до того же десятичного разряда, что и аргумент. В противном случае результат содержит меньше точных десятичных разрядов на величину log10⁡(|f′(x)|){\displaystyle \log _{10}\left(\left|f’\left(x\right)\right|\right)}, округлённую до целого в большую сторону.

Несмотря на нестрогость, приведённые правила достаточно хорошо работают на практике, в частности, из-за достаточно высокой вероятности взаимопогашения ошибок, которая при точном учёте погрешностей обычно не учитывается.

Выбор способа округления

Существует несколько способов округления в зависимости от способа применения результата: округление к меньшему/ большему, округление к меньшему/ большему по модулю, округление к ближайшему целому, округление к ближайшему чётному и т. д… Округление к ближайшему целому, в свою очередь, можно делать по-разному в зависимости от того, какой результат должен получиться, если дробная часть равна 0,5. Я буду рассматривать округление к ближайшему целому, причём 0,5 будет округляться в большую (по модулю) сторону.

Требования к корректной реализации Round() заключаются в следующем:

  • правильно округляет до ближайшего целого все конечные числа;
  • поддерживает специальные значения (NaN, Inf, -0), возвращая их без изменений.

Я буду использовать следующие тестовые примеры для проверки корректности, в каждой паре содержатся исходное значение и предполагаемый результат выполнения функции Round():

В этом списке есть обычные числа, специальные значения и некоторые граничные случаи, с которыми простым алгоритмам сложно справиться

Обратите внимание, что, поскольку мы используем float, мы не можем использовать число 0,49999999999999999 в качестве ближайшего к 0,5, так как из-за ограниченной точности float это число в точности равно 0,5. Вместо этого я использую 0,49999999999999994

Реализации, предложенные в закрытом тикете, явно не были проверены на подобных данных, часто не работали даже те из них, которые были предложены известными людьми. Это лишний раз доказывает, насколько сложно написать Round().

int(f + 0.5)

Первая реализация, предложенная rsc, выглядела следующим образом:

Она некорректно работает с особыми значениями, отрицательными числами, числами больше math.MaxInt64 и числами, близкими к 0,5:

Floor() or Ceil()

Второй предложенный вариант учитывал отрицательные числа:

однако продолжал некорректно работать в некоторых случаях:

Первые два теста не проходят, потому что результат разности n — 0,5 равен в точности -1,0, тогда как мы ожидаем получить что-то точно большее, чем -1,0. Если посмотреть на , можно понять, как решить эту проблему.

Самое интересное, что эта ошибка не является такой уж редкой. До версии 6 точно такая же присутствовала в Java. Хорошо, что с тех пор реализация улучшилась.

int и Copysign

В третьем предложении от minux была предпринята другая попытка решить проблему отрицательных чисел:

И этот вариант всё равно ломает тесты:

Как видно, часть тестов стала проходить, однако другие начали падать. Была предпринята попытка улучшить этот алгоритм:

Однако и она провалилась:

Этот вариант выглядит лучше остальных, но и он некорректно обрабатывает особые значения и большие числа. Первую проблему можно решить с помощью дополнительных условий, но со второй справиться не так просто.

Мы рассмотрели уже четыре варианта, и в каждом из них нашлись изъяны. Настало время посмотреть, как Round() реализуют авторы различных пакетов.

Kubernetes

Kubernetes 1.7 содержит реализацию:

Она ломает следующие тесты:

Судя по тому, что функция возвращает int32, она не предназначена для работы с большими числами. Однако она некорректно работает и с числами, которые близки к 0,5.

Округление чисел

Для нахождения приближенного значения применяется такое действие как округление чисел.

Слово «округление» говорит само за себя. Округлить число значит сделать его круглым. Круглым называется число, которое оканчивается нулём. Например, следующие числа являются круглыми:

10, 20, 30, 100, 300, 700, 1000

Любое число можно сделать круглым. Процедуру, при которой число делают круглым, называют округлением числá.

Мы уже занимались «округлением» чисел, когда делили большие числа. Напомним, что для этого мы оставляли без изменения цифру, образующую старший разряд, а остальные цифры заменяли нулями. Но это были лишь наброски, которые мы делали для облегчения деления. Своего рода лайфхак. По факту, это даже не являлось округлением чисел. Именно поэтому в начале данного абзаца мы взяли слово округление в кавычки.

На самом деле, суть округления заключается в том, чтобы найти ближайшее значение от исходного. При этом, число может быть округлено до определённого разряда — до разряда десятков, разряда сотен, разряда тысяч.

Рассмотрим простой пример на округление. Дано число 17. Требуется округлить его до разряда десятков.

Не забегая вперёд попробуем понять, что означает «округлить до разряда десятков». Когда говорят округлить число 17, то надо понимать, что от нас требуют найти ближайшее круглое число от числá 17. Причём в ходе этого поиска возможно изменения коснутся и той цифры, которая располагается в разряде десятков числá 17 (т.е цифры 1).

Предстáвим числа от 10 до 20 с помощью следующего рисунка:

На рисунке видно, что для числá 17 ближайшее круглое число это число 20. Значит ответ к задаче таким и будет: «17 приближённо равно 20″

17 ≈ 20

Мы нашли приближённое значение для 17, то есть округлили его до разряда десятков. Видно, что после округления в разряде десятков появилась новая цифра 2.

Попробуем найти приближённое число для числа 12. Для этого снова предстáвим числа от 10 до 20 с помощью рисунка:

На рисунке видно, что ближайшее круглое число для 12 это число 10. Значит ответ к задаче таким и будет: 12 приближённо равно 10

12 ≈ 10

Мы нашли приближённое значение для 12, то есть округлили его до разряда десятков. В этот раз цифра 1, которая стояла в разряде десятков в числе 12, не пострадала от округления. Почему так получилось мы расскажем позже.

Попробуем найти ближайшее число для числá 15. Снова предстáвим числа от 10 до 20 с помощью рисунка:

На рисунке видно, что число 15 одинаково удалено от круглых чисел 10 и 20. Возникает вопрос: которое из этих круглых чисел будет приближённым значением для числа 15? Для таких случаев условились принимать бóльшее число за приближённое. 20 больше чем 10, поэтому приближённое значение для 15 будет число 20

15 ≈ 20

Округлять можно и большие числа. Естественно, для них делать рисунки и изображать числа не представляется возможным. Для них существует свой способ. Например, округлим число 1456 до разряда десятков.

Итак, мы должны округлить 1456 до разряда десятков. Разряд десятков начинается на пятёрке:

Теперь о существовании первых цифр 1 и 4 временно забываем. Остается число 56

Теперь смотрим, какое круглое число находится ближе к числу 56. Очевидно, что ближайшее круглое число для 56 это число 60. Значит заменяем число 56 на число 60

Значит при округлении числа 1456 до разряда десятков полýчим 1460

1456 ≈ 1460

Видно, что после округления числа 1456 до разряда десятков, изменения коснулись и самогó разряда десятков. В новом полученном числе в разряде десятков теперь располагается цифра 6, а не 5.

Округлять числа можно не только до разряда десятков. Округлять число можно до разряда сотен, тысяч, десятков тысяч и так далее.

После того, как станóвится ясно, что округление это ни что иное как поиск ближáйшего числá, можно применять готовые правила, которые значительно облегчают округление чисел.

Обозначения

Операция округления числа x к большему (вверх) обозначается следующим образом: ⌈x⌉{\displaystyle \lceil x\rceil }. Аналогично, округление к меньшему (вниз) обозначается ⌊x⌋{\displaystyle \lfloor x\rfloor }. Эти символы (а также английские названия для этих операций — соответственно, ceiling и floor, досл. «потолок» и «пол») были введеныК. Айверсоном в его работе A Programming Language, описавшей систему математических обозначений, позже развившуюся в язык программирования APL. Айверсоновские обозначения операций округления были популяризированы Д. Кнутом в его книге «Искусство программирования».

По аналогии, округление к ближайшему целому часто обозначают как x{\displaystyle \left}. В некоторых прежних и современных (вплоть до конца XX века) работах так обозначалось округление к меньшему; такое использование этого обозначения восходит ещё к работе Гаусса 1808 года (третье его доказательство квадратичного закона взаимности). Кроме того, это же обозначение используется (с другим значением) в нотации Айверсона.

В стандарте Юникод зафиксированы следующие символы:

Названиев Юникоде Код в Юникоде Вид Мнемоникав HTML 4 Примечания
16-ричный десятичный
LEFT CEILING (тж. APL upstile) 2308 8968 &lceil; не путать с:
  • U+2E22 ⸢ — Top left half bracket
  • U+300C 「 — Left corner bracket
RIGHT CEILING 2309 8969 &rceil; не путать с:
  • U+20E7 ◌⃧ — Combining annuity symbol
  • U+2E23 ⸣ — Top right half bracket
LEFT FLOOR (тж. APL downstile) 230A 8970 &lfloor; не путать с:
RIGHT FLOOR 230B 8971 &rfloor; не путать с:
  • U+2E25 ⸥ — Bottom right half bracket
  • U+300D 」 — Right corner bracket

Округление в меньшую сторону при условии в Excel

Пример 4. Клиент взял кредит в МФО на сумму 10000 рулей и спустя 30 дней обязуется вернуть 16000 рублей. В результате пересмотрение договора, клиенту удалось добиться снижения суммы к возврату до 15000 рублей. Определить, как изменилась годовая процентная ставка (округленное значение разницы между прежней и новой ставкой до числа, кратного 10%).

Исходные данные:

Для расчета начальной ставки используем формулу:

Описание аргументов:

  • B4 – число периодов;
  • 0 – выплата за период (0, поскольку выплата только одна);
  • B2 – тело кредита;
  • B3 – сумма к возврату;
  • 0 – оплата по окончанию периода;
  • 0,01 – предположение (любое число из интервала от 0 до 1);
  • 365/30 – выражение для пересчета годовой процентной ставки.

Полученный результат:

Для определения скидки используем формулу:

Описание аргументов:

  • СТАВКА(B4;0;B2;B7;0;0,01)*365/30-B6 – округляемое значение (разница ставок);
  • 10% — число, которому является кратным полученный результат.

Округление выполняется в сторону, большую по модулю, в результате имеем:

Полученное значение отличается от действительного на 8% (122% без округления), поэтому целесообразно явно указать аргумент :

В результате получим:

Аналогичный результат можно получить при использовании функции ОКРВВЕРХ.МАТ без явного указания аргумента :

Результат расчетов:

Примечание: следует помнить, что функции ОКРВВЕРХ.МАТ и ОКРВНИЗ.МАТ являются чувствительными к значениям, принимаемым вторым и третьим аргументами при округлении отрицательных чисел. Некоторые сочетания значений и приводят к различным результатам округления.

Приближённые значения

Приближённые (или приблизительные) значения применяются тогда, когда точное значение чего-то найти невозможно, или же не важно чтобы это значение было точным для исследуемого предмета. Например, на словах можно сказать, что в городе проживает полмиллиона человек, но это высказывание не будет истинным, поскольку количество человек в городе меняется — люди приезжают и уезжают, рождаются и умирают

Поэтому правильнее будет сказать, что в городе проживает приблизительно полмиллиона человек

Например, на словах можно сказать, что в городе проживает полмиллиона человек, но это высказывание не будет истинным, поскольку количество человек в городе меняется — люди приезжают и уезжают, рождаются и умирают. Поэтому правильнее будет сказать, что в городе проживает приблизительно полмиллиона человек.

Ещё пример. В девять утра начинаются занятия. Мы вышли из дома в 8:30. Через некоторое время по дороге мы встретили своего товарища, который спросил у нас сколько сейчас времени. Когда мы выходили из дома было 8:30, на дорогу мы потратили какое-то неизвестное время. Мы не знаем сколько сейчас времени, поэтому отвечаем товарищу: «сейчас приблизительно около девяти часов».

В математике приближенные значения указываются с помощью специального знака. Выглядит он следующим образом:

Читается как «приближённо (приблизительно) равно».

Чтобы указать приближённое (приблизительное) значение, прибегают к такому действию как округление чисел.

Интересный факт о strictfp

В Java есть специальное ключевое слово (strict floating point), которого нет в других языках программирования. И знаете, зачем оно нужно? Оно ухудшает точность работы с вещественными числами. История его появления примерно такова:

Создатели Java:

Мы очень хотим, чтобы Java была суперпопулярна, и программы на Java выполнялись на как можно большем количестве устройств. Поэтому мы прописали в спецификацию Java-машины, что на всех типах устройств все программы должны выполняться одинаково!

Создатели процессора Intel:

Ребята, мы улучшили наши процессоры, и теперь все вещественные числа внутри процессора будет представлены не 8-ю, а 10-ю байтами. Больше байт — больше знаковых цифр. А это значит что? Правильно: теперь ваши научные вычисления будут еще более точными!

Ученые и все, кто занимается сверхточными расчетами:

Круто! Молодцы. Отличная новость.

Создатели Java:

Не-не-не, ребята. Мы же сказали: все Java-программы должны выполняться одинаково на всех устройствах. Принудительно выключаем возможность использования 10 байтовых вещественных чисел внутри процессоров Intel.

Вот теперь все опять отлично! Не благодарите.

Ученые и все, кто занимается сверхточными расчетами:

Да вы там совсем охренели? Ану быстро вернули все как было!

Создатели Java:

Ребята, это для вашей же пользы! Только представьте: все Java-программы выполняются одинаково на всех устройствах. Ну круто же!

Ученые и все, кто занимается сверхточными расчетами:

Нет. Совсем не круто. Быстро вернули все обратно! Или мы вашу Java вам знаете куда засунем?

Создатели Java:

Гм. Что же вы сразу не сказали. Конечно, вернем.

Вернули возможность пользоваться всеми фичами крутых процессоров.

Кстати. Мы так же специально добавили в язык слово : если его написать перед именем функции, вся работа с вещественными числами внутри этой функции будет одинаково плохой на всех устройствах!

Устройство чисел с плавающей точкой

Тип может хранить значения в диапазоне до . Такой гигантский диапазон значений (по сравнению с типом ) объясняется тем, что тип (как и ) устроен совсем иначе по сравнению с целыми типами. Каждая переменная типа содержит два числа: первое называется мантисса, а второе — степень.

Допустим, у нас есть число , и мы сохранили его в переменную типа . Тогда число будет преобразовано к виду , и внутри типа будут храниться два числа — и . Красным выделена «значащая часть числа» (манти́сса), синим — степень.

Такой подход позволяет хранить как очень большие числа, так и очень маленькие. Но т.к. размер числа ограничен 8 байтами (64 бита) и часть бит используется под хранение
степени (а также знака числа и знака степени), максимальная длина
мантиссы ограничена 15 цифрами.

Остальные математические методы

Есть достаточно много методов для различных математических вычислений. Они простые и не требуют
дополнительных разъяснений. Методы, которые часто используются, перечислены в следующей таблице:

Метод Значение
Math.pow(x, y) Возводит x в степень y
Math.exp(x) Экспонента числа x
Math.sqrt(x) Квадратный корень из числа x
Math.log(x) Натуральный логорифм числа x
Math.abs(x) Модуль числа x
Math.max(a, b, c) Максимальное из чисел
Math.min(a, b, c) Минимальное из чисел
Math.sin(x) Синус числа x
Math.cos(x) Косинус числа x
Math.tan(x) Тангенс числа x

Попробуйте произвести какие-нибудь вычисления с использованием этих методов.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий