Как сделать функцию умножения в excel?

3.3. Пример макроса

Второй способ опирается на рекуррентное соотношение,
связывающее два соседних члена в ряду  

Для того чтобы воспользоваться этим соотношением, надо
организовать на листе рекуррентную процедуру. Например, так, как
показано на Рис. 42  


Рис.42 Вычисление функции E1(x)
итерационным способом

Один шаг итерации – это переход от значений в области
J2:J4 к значениям в области
L2:L4. Для того, чтобы сделать следующую
итерацию, нужно скопировать значения, получившиеся в области
L2:L4 и вставить их в область
J2:J4. При этом вставлять нужно только
величины, без формул. Величины в области H2:H4
дают исходные значения для начала итерации .Повторяя многократно
операцию Copy-Paste Special, можно получить в
ячейке L4 искомое значение. Однако
копирование – это скучное занятие и его было бы неплохо
автоматизировать. Для этого можно написать макрос.

Проще всего начать создание макроса через запись команд,
выполняемых на листе. Для этого идем в раздел меню Tools–Macro–Record
New Macro. Появляется окно (Рис. 43), в котором можно указать имя
макроса и где он будет расположен.  


Рис.43 Запись макро

После нажатия OK начинается
запись всех действий, выполняемых на листе. Когда все, что нужно
сохранено в макросе, запись надо остановить командой
Tools–Macro–Stop Recording. Результат можно увидеть, зайдя в
.   

 


Рис.44 Редактор Visual Basic

На Рис. 44 показан записанный макрос, который мы подвергли
небольшому редактированию – добавили цикл для повтора операции
Copy-Paste в числе nIter
раз. Величина nIter берется со
страницы из ячейки J6,
имеющей локальное имя n. Завершает
автоматизацию кнопка Repeat, к которой
привязан макрос Iteration.  

Такой подход использовался нами для построения
алгоритмов и в многомерном разрешении кривых.

Умножение матриц в MS EXCEL

В этой статье рассмотрены операции умножения матриц с помощью функции МУМНОЖ() или англ.MMULT и с помощью других формул, а также свойства ассоциативности и дистрибутивности операции умножения матриц. Примеры решены в MS EXCEL.

  • Операция умножения двух матриц А и В определена только для случаев, когда число столбцов матрицы А равно числу строк матрицы В. 
  • Произведение матрицы А порядка P x N и матрицы В порядка N x Q — это такая матрица С порядка P x Q, у которой каждый элемент равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-ого столбца матрицы В, то есть:
  • Для умножения матриц в MS EXCEL существует специальная функция МУМНОЖ(), которую нужно вводить как формулу массива.
  • Рассмотрим сначала умножение квадратных матриц 2 х 2.

Разместим матрицы в диапазонах А8:В9 и D8:E9  (см. файл примера).

  1. Результат, также матрицу 2 х 2, будем вводить в диапазон H8:I9.
  2. Для этого:
  • выделите указанный диапазон H8:I9
  • поставьте курсор в Строку формул (или нажмите клавишу F2)
  • введите формулу =МУМНОЖ(A8:B9;D8:E9)
  • нажмите CTRL+SHIFT+ENTER

Выделенный диапазон заполнится элементами матрицы. В принципе можно выделить заведомо больший диапазон, в этом случае лишние ячейки будут заполнены ошибкой #Н/Д.

Удалить отдельный элемент матрицы А*В не удастся — только все элементы сразу (выделите весь диапазон и нажмите клавишу DEL). 

Чтобы изменить значения аргументов функции (например, поменять матрицы местами), выделите любую ячейку матрицы, нажмите F2, исправьте формулу и нажмите CTRL+SHIFT+ENTER.

Альтернативной формулой для перемножения матриц является формула массива =СУММПРОИЗВ($A8:$B8;ТРАНСП(D$8:D$9)). Введите формулу в верхнюю левую ячейку диапазона и нажмите CTRL+SHIFT+ENTER. Затем скопируйте ее вниз и вправо на нужное количество ячеек.

  • Если попытаться перемножить матрицы неподходящей размерности (когда число столбцов матрицы А НЕ равно числу строк матрицы В), то функция МУМНОЖ() вернет ошибку #ЗНАЧ!
  • В файле примера также продемонстрированы свойства ассоциативности и дистрибутивности операции умножения матриц.

Выполнение расчетов

Вычисление обратной матрицы в Excel возможно только в том случае, если первичная матрица является квадратной, то есть количество строк и столбцов в ней совпадает. Кроме того, её определитель не должен быть равен нулю. Для вычисления применяется функция массива МОБР. Давайте на простейшем примере рассмотрим подобное вычисление.

Расчет определителя

Прежде всего, вычислим определитель, чтобы понять, имеет первичный диапазон обратную матрицу или нет. Это значение рассчитывается при помощи функции МОПРЕД.

  1. Выделяем любую пустую ячейку на листе, куда будут выводиться результаты вычислений. Жмем на кнопку «Вставить функцию», размещенную около строки формул.
  2. Запускается Мастер функций. В перечне записей, который он представляет, ищем «МОПРЕД», выделяем этот элемент и жмем на кнопку «OK».
  3. Открывается окно аргументов. Ставим курсор в поле «Массив». Выделяем весь диапазон ячеек, в котором расположена матрица. После того, как его адрес появился в поле, жмем на кнопку «OK».
  4. Программа производит расчет определителя. Как видим, для нашего конкретного случая он равен – 59, то есть не тождественен нулю. Это позволяет сказать, что у данной матрицы существует обратная.

Расчет обратной матрицы

Теперь можно преступить к непосредственному расчету обратной матрицы.

  1. Выделяем ячейку, которая должна стать верхней левой ячейкой обратной матрицы. Переходим в Мастер функций, кликнув по значку слева от строки формул.
  2. В открывшемся списке выбираем функцию МОБР. Жмем на кнопку «OK».
  3. В поле «Массив», открывшегося окна аргументов функции, устанавливаем курсор. Выделяем весь первичный диапазон. После появления его адреса в поле, жмем на кнопку «OK».
  4. Как видим, появилось значение только в одной ячейке, в которой была формула. Но нам нужна полноценная обратная функция, поэтому следует скопировать формулу в другие ячейки. Выделяем диапазон, равнозначный по горизонтали и вертикали исходному массиву данных. Жмем на функциональную клавишу F2, а затем набираем комбинацию Ctrl+Shift+Enter. Именно последняя комбинация предназначена для обработки массивов.
  5. Как видим, после этих действий обратная матрица вычислена в выделенных ячейках.

На этом расчет можно считать завершенным.

Если вы производите расчет определителя и обратной матрицы только при помощи ручки и бумаги, то над этим вычислением, в случае работы над сложным примером, можно ломать голову очень долго. Но, как видим, в программе Эксель данные вычисления производятся очень быстро, независимо от сложности поставленной задачи. Для человека, который знаком с алгоритмом подобных расчетов в этом приложении, все вычисление сводится к чисто механическим действиям.

Мы рады, что смогли помочь Вам в решении проблемы.

Помогла ли вам эта статья?

Нахождение обратной матрицы всегда вызывало большие затруднения у учащихся, так как это был очень трудоемкий процесс. И вот такое задание вполне по силам EXCEL.  

Прежде всего, уясним одно правило:  Матрица имеет обратную только тогда, когда ее определитель не равен нулю.  А вот и задание: найдите матрицу, обратную к матрице А, где

Вычислять определитель этой матрицы мы умеем. Я его уже вычислил.

Он оказался равен -4, а  это значит, что у нашей матрицы есть обратная (если бы определитель оказался равен нулю, то мы сказали бы что матрица не имеет обратную и немедленно прекратили все вычисления). Теперь отметим ячейку, с которой начнем записывать ответ. Я отметил ячейку E1.  Нажимаем Формулы, затем Математические и в появившемся окне находим  МОБР

После нажатия появляется вот такое окно, в котором надо вписать адреса ячеек, в которых находятся элементы матрицы  в Массив

У нас элементы записаны в ячейки начиная с А1 и заканчивая в С3 , поэтому так и записываем (смотрите картинку)

Если все сделали правильно, то автоматически заполнится место, обведенное красным и запишется ответ, который обведен черным. В таком виде ответ трудно переваривать и поэтому нажимаем ОК.  В ячейке, которую мы застолбили под ответ, появилось число 3,  Это только первый элемент полученной обратной матрицы.

Чтобы виден был весь ответ, выполняем следующие действия: Начиная с  ячейки Е1 выделяем три строчки и три столбца (именно столько было у исходной матрицы и столько же будет у обратной)

нажимаем клавишу F2,  а затем на одновременно на три клавиши  Ctrl+Shift+Enter.

В выделенном месте появляются, теперь уже все, элементы обратной матрицы. Если Вы сохраните этот документ, то в следующий раз можете воспользоваться плодами своего труда. Так, меняя элементы исходной матрицы, Вы автоматически получаете для нее же обратную матрицу.

На этом все. Крепких вам знаний.

Рубрика: EXCEL в помощь, Статьи. Метки: EXCEL, ИКТ, матрица, обратная матрица

Матрица БКГ: пример построения в ворде

Метод построения модели в «Ворде» более трудоемкий и не совсем четкий. Будет рассмотрен пример по данным, что были использованы для построения матрицы в «Экселе».

Товар

Выручка, ден.ед.

ведущего конкурента, ден.ед.

Расчетные показатели

Темп прироста рынка, %

2014 г.

2015 г.

Темп роста рынка

Относительная доля рынка

Появляется колонка «Темп прироста рынка», значения которой рассчитаны так: (1-данные темпов роста)*100%.

Строится таблица из четырех строк и колонок. Первый столбец объединяется в одну ячейку и подписывается как «Темп прироста рынка». В остальных столбцах необходимо объединить по парам строки, чтобы получилось по две большие ячейки вверху таблицы и внизу осталось две строки. Как на рисунке.

В самой нижней строке будет координата «Относительная доля рынка», выше ее — значения: меньше или больше 1. Обращаясь к данным таблицы (к последним двум ее колонкам), начинается определение товаров по квадрантам. Например, по первому товару, ОДР=0,53, что меньше единицы, значить его расположение будет либо в первом, либо в четвертом квадранте. Темп прироста рынка — отрицательное значение, равное -37%. Поскольку темп прироста в матрице разделен значением в 10%, тогда однозначно товар под номером 1 попадает в четвертый квадрант. Такое же распределение происходит с оставшимися ассортиментными единицами. Результат должен совпасть с диаграммой «Эксель».

Матрица БКГ: пример построения и анализа определяет стратегические позиции ассортиментных единиц фирмы и участвует в принятии решений о распределении ресурсов предприятия.

Инструкция

Матрица БГК представляет собой четыре квадрата, расположенные на оси координат. При этом ось Х – темпы роста рынка, а ось Y – доля рынка, занимаемая конкретным подразделением, в соотношении с долей, занимаемой главным конкурентом.

Координатное пространство оси абсцисс разбивается следующим образом: от 0 до 1 – с шагом 0,1, а затем от 1 до 10 – с шагом 1. Доля оценивается соответственно всех участников отрасли и определяется как отношение собственных продаж к продажам главного конкурента или трех сильнейших конкурентов. 1 означает, что собственные продажи равны продажам сильнейшего конкурента.

В самом низу оси координат находится квадрат, соответствующий типу подразделения с условным обозначением «Собаки» («Хромые утки», «Мертвый груз»). Правый нижний угол соответствует нулю по оси абсцисс и ординат. Такие подразделения занимают самую низкую долю рынка и приносят наименьшую прибыль, а товар пользуется наименьшим спросом. При этом происходит активное потребление .

От «Собак» нужно избавляться путем сворачивания .

Левее по оси абсцисс расположен квадрат, обозначающий тип подразделения «Дойные коровы». Такие подразделения характеризуются высокой занимаемой долей рынка, приносят низкий, но стабильный доход. Товар пользуется низким спросом, но «Коровы» не требуют дополнительных инвестиций, чем объясняется их ценность.

Средства, получаемые от «Дойных коров», вкладывают в развитие «Звезд» и «Трудных ».

Над «Коровами» находится квадрат «Звезды». Это подразделения, приносящие наибольший доход и занимающие самую большую долю рынка. Товар пользуется большим спросом.

Для сохранения доли рынка, укрепления и расширения производства требуются дополнительные инвестиции и вложения. Поэтому , получаемый от «Звезд», достаточно низкий.

Правее «Звезд» над «Собаками» располагается квадрат «Трудные дети» («Темные лошадки», «Знаки вопроса», «Дикие кошки»). Олицетворяет собой тип подразделений, приносящих высокую прибыль, но занимающих небольшую долю рынка. Товар пользуется высоким спросом. Высокие темпы роста.

За «Трудными детьми» необходимо пристально наблюдать. В будущем они могут стать как «Звездами», так и «Собаками». Если существуют свободные инвестиции, их нужно вкладывать в «Детей» с целью перевода их в «Звезды». Если такой возможности нет, от «Трудных детей» стоит избавляться.

Недостатков у матрицы БГК достаточно ввиду сильного упрощения рассматриваемой ситуации. К учету принимаются только два фактора, оказывающих влияние , но на самом деле их гораздо больше. Кроме того, не учитывается тот факт, что удаление из матрицы «Собак» может привести к удорожанию «Звезд» и «Детей», что негативно скажется на занимаемой ими доле рынка, а следовательно приведет к снижению прибыли.

С другой стороны, матрица наглядна, легка в построении, проста для понимания. С ее помощью довольно быстро можно провести анализ отдельных -единиц, соразмеряя возможности их развития в перспективе относительно доступного инвестиционного портфеля.

Множественный коэффициент корреляции в Excel (Эксель)

Коэффициент корреляции используется в том случае, когда нужно определить значение зависимости между значениями. Позже эти данные задают в одной таблице которая определяется как матрица корреляции. С помощью программы Microsoft Excel можно сделать расчёт корреляции.

Коэффициент корреляции определяется некоторыми данными. Если уровень показателя составляет от 0 до 0.3, то в таком случае связи нет. Если показатель составляет от 0.3 до 0.5 — это слабая связь. Если показатель доходит до 0.7, то связь средняя. Высокой можно назвать когда показатель достигает отметки 0.7-0.9. Если показатель составляет 1 — это наиболее сильная связь.

Первым делом нужно подключить пакет анализа данных. Без его активации дальнейшие действия нельзя провести. Подключить его можно открыв раздел «Главная» и в меню выбрать «Параметры».

Далее откроется новое окно. В нём нужно выбрать «Надстройки» и в поле управления параметрами выбрать среди элементов списка «Надстройки Excel»После запуска окна параметров посредством его левого вертикального меню переходим в раздел «Надстройки». После этого нажимаем «Перейти».

Далее откроется новое окно надстроек. Находим в списке «Пакет анализа» и ставим галочку. После этого подтверждаем действие. И пакет анализа данных будет подключён для документа Excel.

После этих действий можно начать работу. Создана таблица с данными и на её примере сделаем нахождение множественного коэффициента корреляции.Для начала откроем раздел «Данные» и среди инструментария выбираем «Анализ данных».

Откроется специальное окно с инструментами для анализа. Выбираем «Корреляция» и подтверждаем действие.

Перед пользователем появится новое окно с параметрами. Как входной интервал задается диапазон значений в таблице. Задать можно как в ручную так и выделив данные, которые будут отображены в специальном поле. Также можно разгруппировать элементы таблицы. Вывод сделаем на текущей странице, а значит в настройках параметра вывода выбираем «Выходной интервал». После этого подтверждаем действие.

Результатом будет отображение корреляционной матрицы с данными с различными значениями. Все взаимосвязи имеют высокий уровень.

Расчет коэффициента корреляции

Разберем расчёт на нескольких образцах. К примеру, есть табличные данные, где по месяцам описаны в отдельных столбцах траты на рекламное продвижение и объём продаж. Исходя из таблицы, будем выяснять уровень зависимости объема продаж от денег, затраченных на рекламное продвижение.

Способ 1: определение корреляции через Мастер функций

КОРРЕЛ – функция, позволяющая реализовать корреляционный анализ. Общий вид – КОРРЕЛ(массив1;массив2). Подробная инструкция:

  1. Необходимо произвести выделение ячейки, в которой планируется выводить итог расчета. Нажать «Вставить функцию», находящуюся слева от текстового поля для ввода формулы.

1

  1. Открывается «Мастер функций». Здесь необходимо найти КОРРЕЛ, кликнуть на нее, затем на «ОК».

2

  1. Открылось окошко аргументов. В строку «Массив1» необходимо ввести координаты интервалы 1-го из значений. В рассматриваемом примере — это столбец «Величина продаж». Нужно просто произвести выделение всех ячеек, которые находятся в этой колонке. В строку «Массив2» аналогично необходимо добавить координаты второй колонки. В рассматриваемом примере — это столбец «Затраты на рекламу».

3

  1. После введения всех диапазонов кликаем на кнопку «ОК».

Коэффициент отобразился в той ячейке, которая была указана в начале наших действий. Полученный результат 0,97. Этот показатель отображает высокую зависимость первой величины от второй.

4

Способ 2: вычисление корреляции с помощью Пакета анализа

Существует еще один метод определения корреляции. Здесь используется одна из функций, находящаяся в пакете анализа. Перед ее использованием нужно провести активацию инструмента. Подробная инструкция:

  1. Переходим в раздел «Файл».

5

  1. Открылось новое окошко, в котором нужно кликнуть на раздел «Параметры».
  2. Жмём на «Надстройки».
  3. Находим в нижней части элемент «Управление». Здесь необходимо выбрать из контекстного меню «Надстройки Excel» и кликнуть «ОК».

6

  1. Открылось специальное окно надстроек. Ставим галочку рядом с элементом «Пакет анализа». Кликаем «ОК».
  2. Активация прошла успешно. Теперь переходим в «Данные». Появился блок «Анализ», в котором необходимо кликнуть «Анализ данных».
  3. В новом появившемся окошке выбираем элемент «Корреляция» и жмем на «ОК».

7

  1. На экране появилось окошко настроек анализа. В строчку «Входной интервал» необходимо ввести диапазон абсолютно всех колонок, принимающих участие в анализе. В рассматриваемом примере — это столбики «Величина продаж» и «Затраты на рекламу». В настройках отображения вывода изначально выставлен параметр «Новый рабочий лист», что означает показ результатов на другом листе. По желанию можно поменять локацию вывода результата. После проведения всех настроек нажимаем на «ОК».

8

Вывелись итоговые показатели. Результат такой же, как и в первом методе – 0,97.

1.3. Адресация

A1C5Name BoxA1F=адрес=A1

Например, первая ячейка имеет абсолютный адрес –  $A$1, относительный адрес –
A1, и два
смешанных адреса – $A1 и
A$1. Различие в способе адресации проявляется,
прежде всего, тогда, когда формула копируется и переносится в другое
место. Поясним это на простом примере.


Рис. 5 Абсолютная и относительная адресация

На верхней панели показан фрагмент листа с
данными, выделенными желтым цветом. В зеленых областях (столбец
F и строка 6)
приведены различные варианты адресации одной и той же ячейки –
A1 (выделена оранжевым). Тип адресации
указан рядом с соответствующей ячейкой. Скопируем каждую из зеленых
областей (по очереди) и вставим рядом – в соседних столбцах:
G и H, и в
соседних строках: 7 и
8 (средняя панель ). Видно, что
результат зависит от типа адресации. Для абсолютной адресации ссылка на
первую ячейку сохранилась. Для относительной – ссылка сдвигается вправо
или вниз, сохраняя относительное положение двух ячеек: той, где стоит
ссылка, и той, на которую ссылаются. Для смешанной адресации результат
зависит от того, куда переносится копия, и от того, какая часть адреса
фиксируется значком доллара $. На правой
панели показаны соответствующие формулы, получающиеся после копирования.
Заметим, что ссылки на ячейки могут изменяться в зависимости от способа
адресации, но при перемещении ячейки с формулой содержащиеся в формуле
ссылки не изменяются.

Для адресации ячейки, которая находится на другом листе той же книги,
надо указывать еще и имя листа, например: Data!B2.
Восклицательный знак (!) отделяет имя листа
от адреса ячейки. Если имя листа содержит пробел, тогда имя надо
заключить в одинарные кавычки, например ‘Raw
Spectra’!C6. При адресации к другой книге, ее имя указывается
впереди, в квадратных скобках, например;
Results!P24

Подробнее о способах адресации можно прочитать

здесь.

Сложение и вычитание матриц в Excel

Способ 1

Следует отметить, что складывать и вычитать можно матрицы одинаковой размерности (одинаковое количество строк и столбцов у каждой из матриц). Причем каждый элемент результирующей матрицы С будет равен сумме соответствующих элементов матриц А и В, т.е. сij = аij + bij.

Рассмотрим матрицы А и В размерностью 3х4. Вычислим сумму этих матриц. Для этого в ячейку N3 введем формулу =B3+H3, где B3 и H3 – первые элементы матриц А и В соответственно. При этом формула содержит относительные ссылки (В3 и H3), чтобы при копировании формулы на весь диапазон матрицы С они могли измениться.

С помощью маркера автозаполнения скопируем формулу из ячейки N3 вниз и вправо на весь диапазон матрицы С.

Для вычитания матрицы В из матрицы А (С=А — В) в ячейку N3 введем формулу =B3 — H3 и скопируем её на весь диапазон матрицы С.

Способ 2

Этот способ отличается тем, что результат сложения/вычитания матриц сам является массивом. В этом случае нельзя удалить элемент массива.

Для деления матрицы на число этим способом выделяем диапазон, в котором будет вычислен результат, вводим знак «=», выделяем диапазон, содержащий первую матрицу А, нажимаем на клавиатуре знак сложения (+) и выделяем вторую матрицу В. После ввода формулы нажимаем сочетание клавиш Ctrl+Shift+Enter, чтобы значениями заполнился весь диапазон.

2.4. Доступ к частям матрицы

Для доступа и отделения частей матрицы применяются две
стандартные функции листа.

OFFSET / СМЕЩ

Возвращает ссылку на диапазон, отстоящий от ячейки или
диапазона ячеек на заданное число строк и столбцов.


Синтаксис 

OFFSET(reference,
rows, cols )
 

Примечания 

  • Если
    аргументы height или width
    опущены, то предполагается, что используется
    такая же высота или ширина, как в аргументе
    reference;

  • Аргумент
    reference – это ссылка на область,
    которая должна быть реальным, а не виртуальным массивом, т.е.
    находиться где-то на листе. 

Пример


Рис.29 Функция OFFSET

OFFSET является функцией массива и ее ввод должен
завершаться нажатием комбинации CTRL+SHIFT+ENTER.

INDEX / ИНДЕКС

Возвращает значения элементов в массиве, выбранных с
помощью индексов строк и столбцов.


Синтаксис 

INDEX (reference
)

Примечания 

  • Если
    аргумент row_num опущен, то выбирается
    весь столбец;

  • Если
    аргумент col_num опущен, то выбирается вся строка;

  • Если указаны
    оба необязательных аргумента, то возвращается значение, находящееся
    в ячейке на пересечении соответствующей строки и столбца;

  • Аргумент
    reference может быть ссылкой, как на
    область, так и на виртуальный массив.

Пример


Рис.30 Функция INDEX

INDEX является функцией массива и ее ввод должен
завершаться нажатием комбинации CTRL+SHIFT+ENTER.

Способ 2: Умножение ячейки на число

Если можно умножить одну ячейку на другую, значит, ничего не помешает в качестве второй клетки подставить необходимое число. Тогда запись формулы станет другой, но не кардинально.

  1. Введите содержимое строки так же, как это было показано в предыдущем способе, но не заполняйте данные о второй ячейке.

Вместо этого добавьте знак умножения и напишите число для математической операции.

Завершите редактирование, нажав на Enter, и посмотрите, что получилось в итоге.

Так же совмещайте умножение ячеек на другие ячейки и числа или добавляйте другие математические операции, не забывая о последовательности их выполнения. Если что-то нужно поставить в приоритет, используйте скобки для обозначения действия. Запись таких формул в Excel в точности соответствует стандартным правилам математики.

Транспонирование

Транспонировать матрицу – поменять строки и столбцы местами.

Сначала отметим пустой диапазон, куда будем транспонировать матрицу. В исходной матрице 4 строки – в диапазоне для транспонирования должно быть 4 столбца. 5 колонок – это пять строк в пустой области.

1 способ. Выделить исходную матрицу. Нажать «копировать». Выделить пустой диапазон. «Развернуть» клавишу «Вставить». Открыть меню «Специальной вставки». Отметить операцию «Транспонировать». Закрыть диалоговое окно нажатием кнопки ОК.

2 способ. Выделить ячейку в левом верхнем углу пустого диапазона. Вызвать «Мастер функций». Функция ТРАНСП. Аргумент – диапазон с исходной матрицей.

Нажимаем ОК. Пока функция выдает ошибку. Выделяем весь диапазон, куда нужно транспонировать матрицу. Нажимаем кнопку F2 (переходим в режим редактирования формулы). Нажимаем сочетание клавиш Ctrl + Shift + Enter.

Преимущество второго способа: при внесении изменений в исходную матрицу автоматически меняется транспонированная матрица.

Сложение

Складывать можно матрицы с одинаковым количеством элементов. Число строк и столбцов первого диапазона должно равняться числу строк и столбцов второго диапазона.

В первой ячейке результирующей матрицы нужно ввести формулу вида: = первый элемент первой матрицы + первый элемент второй: (=B2+H2). Нажать Enter и растянуть формулу на весь диапазон.

Умножение матриц в Excel

Условие задачи:

Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число. Формула в Excel: =A1*$E$3 (ссылка на ячейку с числом должна быть абсолютной).

Умножим матрицу на матрицу разных диапазонов. Найти произведение матриц можно только в том случае, если число столбцов первой матрицы равняется числу строк второй.

В результирующей матрице количество строк равняется числу строк первой матрицы, а количество колонок – числу столбцов второй.

Для удобства выделяем диапазон, куда будут помещены результаты умножения. Делаем активной первую ячейку результирующего поля. Вводим формулу: =МУМНОЖ(A9:C13;E9:H11). Вводим как формулу массива.

Обратная матрица в Excel

Ее имеет смысл находить, если мы имеем дело с квадратной матрицей (количество строк и столбцов одинаковое).

Размерность обратной матрицы соответствует размеру исходной. Функция Excel – МОБР.

Выделяем первую ячейку пока пустого диапазона для обратной матрицы. Вводим формулу «=МОБР(A1:D4)» как функцию массива. Единственный аргумент – диапазон с исходной матрицей. Мы получили обратную матрицу в Excel:

Нахождение определителя матрицы

Это одно единственное число, которое находится для квадратной матрицы. Используемая функция – МОПРЕД.

Ставим курсор в любой ячейке открытого листа. Вводим формулу: =МОПРЕД(A1:D4).

Таким образом, мы произвели действия с матрицами с помощью встроенных возможностей Excel.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий